vmvecPop

 

 

Description

When evaluated, this vm instruction stores the top word from the internal Vector Processing Stack, into the destination, specified by the destination argument, and decrements the internal Vector Processing Stack by one position. The top stack word is stored, at the destination, as the data type specified by the type argument. There are no conversions made between different types. The initial values in the three pointer registers, the three increment registers, and the counter register are NOT altered by this instruction. This instruction may return an Error value. After the operation, the Instruction Pointer is promoted. The operation of this vm instruction is expressed in the following C expression:

The possible values of the type argument are any immediate integer value, indicating the data type, or any one of the following symbolic data types:

  • Float: [NumStack Only] (The top stack word is stored as a 32 bit IEEE floating point at the destination.)
  • Number: [NumStack Only](The top stack word is stored as a 64 bit IEEE floating point at the destination.)
  • The possible values of the destination argument are any immediate integer value, indicating the destination, or any one of the following symbolic data types:

     

    Syntax

    (vmvecPop type destination)


    Name Format AIS Types
    typeimmediateinteger
    destinationimmediateinteger


     

    Examples

    Here are a number of links to Lambda coding examples which contain this instruction in various use cases.

    s

     

    Keyword Links

    Here are a number of links to this instruction by related keywords.

    [...under construction ]

     

    Instruction Type

    Here are a number of links to this instructions of this same type.

    vmvecBinary vmvecInitialize vmvecLoop vmvecNumScalar
    vmvecNumVector vmvecPop vmvecPopNumber vmvecPush
    vmvecPushNumber vmvecSetIncrements vmvecSetPointers vmvecSwapCC
    vmvecUnary

     

    Argument Types

    Here are a number of links which are related to this instructions .

    vmadd vmaddi vmaddn vmand
    vmapply vmargcount vmargfetch vmcadd
    vmcall vmcdiv vmcmul vmcsub
    vmdebugger vmdiv vmdivi vmdivn
    vmdivr vmdivri vmiadd vmiand
    vmiandb vmidiv vmidivr vmimul
    vmior vmiorb vmisub vmixor
    vmixorb vmjump vmjumpcc vmmul
    vmmuli vmmuln vmnadd vmnatAddInteger
    vmnatAddNumber vmnatAndInteger vmnatDivInteger vmnatDivNumber
    vmnatDivrInteger vmnatDivrNumber vmnatJumpCCInteger vmnatJumpCCNumber
    vmnatLoadFloat vmnatLoadInteger vmnatLoadLong vmnatLoadNumber
    vmnatLoadShort vmnatMulInteger vmnatMulNumber vmnatOrInteger
    vmnatSaveFloat vmnatSaveInteger vmnatSaveLong vmnatSaveNumber
    vmnatSaveShort vmnatShlInteger vmnatShrInteger vmnatSubInteger
    vmnatSubNumber vmnatXorInteger vmndiv vmndivr
    vmnmul vmnsub vmopt vmor
    vmpop vmpush vmrefbitvector vmrefbytevector
    vmrefdickey vmrefdicvalue vmrefdirkey vmrefdirvalue
    vmreffltvector vmrefintvector vmreflongvector vmrefmatrix
    vmrefnummatrix vmrefnumvector vmrefobjvector vmrefpcdvector
    vmrefshortvector vmrefstring vmrefstrkey vmrefstrvalue
    vmrefsymbol vmreftext vmrefvector vmregAbsNumber
    vmregAddImmediate vmregAddInteger vmregAddNumber vmregAddPointer
    vmregAndImmediate vmregAndInteger vmregCosNumber vmregDivImmediate
    vmregDivInteger vmregDivNumber vmregDivrImmediate vmregDivrInteger
    vmregDivrNumber vmregIncPointer vmregInteger vmregJump
    vmregJumpCCImmediate vmregJumpCCInteger vmregJumpCCNumber vmregLoadAddress
    vmregLoadDclType vmregLoadInteger vmregLoadJmpPointer vmregLoadNumber
    vmregLoadTail vmregLoadType vmregLogNumber vmregMoveImmediate
    vmregMoveInteger vmregMoveNumber vmregMulImmediate vmregMulInteger
    vmregMulNumber vmregNumber vmregObjLength vmregObjPointer
    vmregOrImmediate vmregOrInteger vmregPwrNumber vmregRefCharacter
    vmregRefFloat vmregRefInteger vmregRefLong vmregRefNumber
    vmregRefShort vmregRefXCharacter vmregRefXFloat vmregRefXInteger
    vmregRefXLong vmregRefXNumber vmregRefXShort vmregRefXWord
    vmregRunInHarware vmregSaveDeclType vmregSaveDeclTypeImmediate vmregSaveInteger
    vmregSaveNumber vmregSaveTail vmregSaveTailImmediate vmregSetCharImmediate
    vmregSetCharacter vmregSetFloat vmregSetIntImmediate vmregSetInteger
    vmregSetLong vmregSetLongImmediate vmregSetNumber vmregSetShort
    vmregSetShortImmediate vmregSetWord vmregSetXCharImmediate vmregSetXCharacter
    vmregSetXFloat vmregSetXIntImmediate vmregSetXInteger vmregSetXLong
    vmregSetXLongImmediate vmregSetXNumber vmregSetXShort vmregSetXShortImmediate
    vmregSetXWord vmregShlImmediate vmregShlInteger vmregShrImmediate
    vmregShrInteger vmregSinNumber vmregSqrtNumber vmregStringCompare
    vmregStringiCompare vmregSubImmediate vmregSubInteger vmregSubNumber
    vmregSubPointer vmregTanNumber vmregXorImmediate vmregXorInteger
    vmsend vmsetbitvector vmsetbytevector vmsetdickey
    vmsetdicvalue vmsetdirkey vmsetdirvalue vmsetfltvector
    vmsetintvector vmsetlongvector vmsetmatrix vmsetnummatrix
    vmsetnumvector vmsetobjvector vmsetpcdvector vmsetshortvector
    vmsetstring vmsetstrkey vmsetstrvalue vmsetvector
    vmshl vmshr vmsub vmsubi
    vmsubn vmvecBinary vmvecInitialize vmvecNumScalar
    vmvecNumVector vmvecPop vmvecPopNumber vmvecPush
    vmvecPushNumber vmvecSetIncrements vmvecSetPointers vmvecSwapCC
    vmvecUnary vmxor

     

    Virtual Machine Instructions

    AIS Lambdas are designed to be write-once-run-anywhere executable objects. This is accomplished via the virtual machine concept of software Lambda execution. Lambda virtual machines are designed to be mapped onto the actual host microchip at the server location, providing faithful Lambda execution wherever the Lambda may travel on the Internet. There are currently several virtual machines operating within Analytic Information Server. The DRM virtual machine uses a Dynamically typed Register Machine model to provide portable Lambda execution from high level dynamically typed instructions all the way to super fast microchip-level register execution. The DRM virtual machine runs in emulation mode during the testing and debug phases of Lambda development, and there is an AIS Lambda debugger available for Lambdas running on this virtual machine. During the final release phases of Lambda development, DRM virtual machine Lambdas are automatically converted to the NATIVE virtual machine on the host computer, using the just-in-time compiler. The NATIVE virtual machine is a faithful machine language translation of the execution rules in the DRM virtual machine onto the actual host microchip at the server location. NATIVE virtual machine execution runs at microchip-level execution speeds.

    Analytic Information Server (AIS)

    AIS Component Systems

    • Smartbase Engine
    • QT C++ Libraries
    • MySQL Relational Database
    • AIS Lisp Libraries
    • Rapid Analytic Demo IDE