svmRegression

 

 

Overview

The svmRegression function returns the Number Vector containing the trained weights for the support vector machine regression on the specified training points. The argument {X} contains the N x M independent variables in the form of a number vector array:

x11 x12  ... x1M
x21 x22 ... x2M
... ... ... ...
xN1 xN2 ... xNM

The argument {Y} contains the N dependent variables in the form of a number vector:

y1
y2
...
yN

The return value is a Structure {S} containing the following elements:

The return element {Weights} contains the N trained weights for the support vector machine dual form regression model in the form of a number vector:

w1
w2
...
wN

For a more thorough discussion of the complex subject of support vector machine regression, please refer to "An Introduction to Support Vector Machines and other kernel-based learning methods", by Nello Christianini and John Shawe-Taylor, Cambridge University Press, 2000.

Usage

The svmRegression function can be used to perform linear and non-linear dual form regressions on small, mid, and large scale training data. Training data up to 50,000 x 100 can be regressed, in reasonable time, on medium speed laptop computers. A wide range of built-in support vector machine kernels are available plus user defined kernel Lambdas are also readily accepted, making the svmRegression function useful across a wide range of applications.

 

Syntax


Expression:

(svmRegression X Y kernel ETollerance maxError MaxGenerations maxSVSize printSW)


Arguments Name Type Description
Argument:XInteger The N x M Number Vector array of independent training points
Argument:YInteger The N Number Vector of dependent training points
Argument:kernelSymbol The two argument support vector machine kernel function to be used in the regression.
Argument:ETolleranceReal The error tolerance limit as a percent of dependent value.
Argument:maxErrorReal The maximum error rate at which training may stop.
Argument:MaxGenerationsInteger The maximum number of training generations at which training must stop.
Argument:MaxSVSizeInteger The maximum number of support vectors attempted during initialization.
Argument:printSWSymbol The verbose mode display switch for testing purposes.

Returns:

The Structure {S} with elements: Error, Weights, Generations, Ey, and Py.



 

Examples

Here are a number of links to Lambda coding examples which contain this instruction in various use cases.

 

Argument Types

Here are the links to the data types of the function arguments.

Vector Structure Integer NumVector
Symbol Real

Here are also a number of links to functions having arguments with any of these data types.

++ += + /=
/ *= * --
-= - addMethod addi
appendWriteln append apply avg
badd balance bdiv binaryInsert
binaryNand binaryNor binaryNot binaryNxor
binarySearch bitToNumberVector bitwiseAnd bitwiseNand
bitwiseNor bitwiseNot bitwiseNxor bitwiseOr
bitwiseShiftLeft bitwiseShiftRight bitwiseXor bmod
bmul boolean cadd cdiv
cdr char character class
cmod cmul code compareEQ
compareGE compareGT compareLE compareLT
compareNE compare comparison compress
cons copy count csub
day days360 debugDetective debug
defchild defclass define(macro) defineStructure
define defmacro defmethod deforphan
defriend defstruct defun deleteRows
delete dimension disassemble display
divi downcase encode evalInSyncLocalContext
exit exportCsv exportSbf exportTab
fact fdisplay fieldsOf fileClose
fileCopy fileDisplay fileErase fileOpen
fileReadRecord fileRead fileResize fileSeek
fileWrite filewriteln findBlock find
floor fraction freeBlock gc
gcd getGlobalValue getRecursionCount getSymbolTable
globalBinding hashString hour iadd
icompareEQ icompareGE icompareGT icompareLE
icompareLT icompareNE idiv imod
importCsv importSbf importTab imul
insertRows insert inside inspect
integer isAtom isBitVector isBoolean
isBound isByteVector isCharAlphabetic isCharAlphanumeric
isCharLowercase isCharName isCharNumeric isCharUppercase
isCharWhitespace isChar isCharacter isClass
isComplex isDate isDictionary isDirectory
isEqual isError isEven isFloatVector
isIdentical isInside isIntegerVector isInteger
isLambda isMatrix isMember isMoney
isNumberMatrix isNumberVector isNumber isObjectVector
isObject isPair isPcodeVector isString
isStructure isSymbol isText isType
isVector isub kurtosis lcm
left length list lock
macroReplace makeGramMatrix makeQuotedList makeQuotedSymbol
makeStructure map mapc max
median member methodsOf mid
min minute mod modi
money month muli new
number objectToList objectToMatrix objectToNumMatrix
objectToNumVector objectToStructure objectToVector offset
openLog pair parent parse
pointer preAllocateFixedMemoryBlocks product proplist
proprecord putprop qt random
randomize range rank refAttributes
refValues ref remProp remove
rename replace rept resize
reverse right round saveObject
saveRepository second send setAttributes
setBlock setCar setCdr setLastCdr
set setf setq sizeof
skew sort sql sqrt
srandom stdev stdevp stringToBVector
stringToVector string subi substitute
substring sum sumsqr super
svmRegression symbolToTypeCode symbol system
text time type uniqueInsert
unlock var varp vectorBinaryInnerProduct
vectorBipolarInnerProduct vectorCosineInnerProduct vectorCubeInnerProduct vectorDelete
vectorExpInnerProduct vectorFill vectorInnerProduct vectorLogInnerProduct
vectorQuartInnerProduct vectorQuintInnerProduct vectorSigmoidInnerProduct vectorSineInnerProduct
vectorSquareInnerProduct vectorTanInnerProduct vectorTanhInnerProduct writelg
writeln year

Analytic Information Server (AIS)

AIS Component Systems

  • Smartbase Engine
  • QT C++ Libraries
  • MySQL Relational Database
  • AIS Lisp Libraries
  • Rapid Analytic Demo IDE